HTTP-FUSE CLOOP with Software RAID and DNS-Balance for Embedded Linux

http://unit.aist.go.jp/itri/knoppix/http-fuse/index-en.html

Jun Kanai⁽¹⁾, **Kuniyasu Suzaki** ⁽²⁾,

Toshiki Yagi⁽²⁾, Mitaro Namiki⁽¹⁾

- 1) Tokyo University of Agriculture and Technology
- 2) National Institute of Advanced Industrial Science and Technology

Outline

- What is HTTP-FUSE CLOOP?
- New Optimization
 - Software RAID
 - DNS Balance
- Customization for embedded Linux
 - Reduce memory copy
 - Replace de-compress algorithm
 - Performance on SH4, ARM9
- Conclusions
- Demo

What is HTTP-FUSE CLOOP?

- HTTP-FUSE CLOOP is network block device which is designed for Internet Thin Client.[OLS'06, LCA'07 MinConf Virtualization]
 - Based on CLOOP (Compressed Loopback Device) which is used on 1CD Linux "KNOPPIX"

CLOOP

- CLOOP enables to pack 2.0GB contents (Root File System) to 700MB CD-ROM.
 - Each 64KB block is compressed by zlib and save a loop file.
- HTTP-FUSE CLOOP gets rid of COOP file form CD-ROM and exposed it to Internet.

HTTP-FUSE CLOOP

- HTTP-FUSE CLOOP is made from existing block device. The block device is split, compressed. Each split block is saved to each block file.
 - Current split size is 256KB.
- The block files are managed by index file, which includes location information.
 - index file works as a header of CLOOP file.
- Each block file name is a MD5 value of its contents.
 - If there is a same contests blocks, they are held together a same name file and reduce total file space.
 - The basic idea is resemble to Venti of Plan9
- Block files are reconstructed to a CLOOP file by FUSE wrapper.
 - FUSE is a User-land File System.
 - http://fuse.sf.net

Block Device

Box of HTTP-FUSE CLOOP

- The request for server is HTTP only.
- Small Linux Box can be the server of HTTP-FUSE CLOOP.
- These Linux Boxes are not so powerful. But they are bound up by software RAID.

USL-5P HTTP-FUSE-KNOPPIX-BOX (SH4-266MHz/64MBMem/CF/ 100MbpsLAN/150g)

Weak point of HTTP-FUSE CLOOP

- Vulnerable for Network Latency
 - HTTP-FUSE CLOOP have to download small block files on demand (sequentially). It takes network latency severely.
- New Solution
 - DNS Balance
 - Find good server for a client PC.
 - Software RAID
 - Widen bandwidth with multiple access.

DNS Balcance

- Name resolver (Load balancer) developed by Yokota [18th IEEE Int.
 Conf. On Advanced Information Networking and Application]
 - http://openlab.jp/dns_balance/dns_balance.html
 - Written by Ruby
 - On Internet
 - Find near server for Client.
 - Rrouting information is offered by RADB.net
 - On LAN
 - DNS Balance is used for Load balancing.
 - HTTP-FUSE CLOOP uses stateless HTTP. So it enables to replace server dynamically.

Current HTTP sites

- Web Hosting Service is reasonable.
 - 5GB/ mount from 10\$

DNS request Resolve proxy.local.net to proxy.local.net Internet balance traffic congestion and 192.168.0.10 proxy's load dynamically. Router proxy.local.net DNS 192.168.0.10 Clients DNS & Client HTTP Proxy Cache

DNS request
Resolve **proxy.local.net** to
balance traffic congestion and
proxy's load dynamically.

proxy.local.net 192.168.0.10 192.168.0.11 192.168.0.12 proxy.local.net DNS

Internet

Router

Clients Keep Alive time out Re-ask to DNS

Client

DNS & \
HTTP Proxy Cache

DNS request Resolve proxy.local.net to proxy.local.net Internet balance traffic congestion and 192.168.0.10 proxy's load dynamically. 192.168.0.11 192.168.0.12 Router proxy.local.net DNS 192.168.0.10 192.168.0.11 192.168.0.12 Clients DNS & Client HTTP Proxy Cache

DNS request Resolve proxy.local.net to proxy.local.net Internet balance traffic congestion and 192.168.0.10 proxy's load dynamically. 192.168.0.11 192.168.0.12 Router proxy.local.net Remove proxy DNS 192.168.0.10 192.168.0.11 192.168.0.12 Return 192,168.0.11 Re-ask to DNS Clients DNS & Client HTTP Proxy Cache

DNS request Resolve proxy.local.net to proxy.local.net Internet balance traffic congestion and proxy's load dynamically. 192.168.0.11 192.168.0.12 Router proxy.local.net DNS 192.168.0.11 192.168.0.12 Clients DNS & Client HTTP Proxy Cache

Software RAID

- Weakpoint of HTTP-FUSE CLOOP
 - accepts only one request
 - doesn't have recovery procedure
 - because it is a software device and doesn't assume any troubles.

- MD (Multiple Disks) driver aggregate some block disks to a virtual disk as a RAID.
 - We applied MD to HTTP-FUSE CLOOP and enable to accept multiple requests.

Performance of Software RAID

The bandwidth becomes 4.14 times wider than original.

Super linear is caused by access overlap of MD

Fault-tolerant

- The combination of MD and DNS Balance achieves faulttolerance because the server of HTTP-FUSE CLOOP is replaced by DNS Balance dynamically.
- The DNS Balance checks the live servers.
 - When server is down, DNS Balance find the down server by heart-beat. The client asks DNS to replace the dead server and DNS answers a live server.

Fault-tolerant

- Fault Tolerant
 - Application don't recognize the server down.
- Restoration time is determined by
 - DNSTTL
 - HTTP-FUSE timeout
 - HTTP-Keep-Alive
 - List Update time (Heartbeat)

For Embedded Linux

- Embedded Linux runs on low power machine
 - Low power CPU, Small Memory & Storage
 - Network is 100Mbps
 - Network is rich resource. HTTP-FUSE CLOOP compensates the small storage.

HTTP-FUSE CLOOP is designed for powerful PC.

Reduce memory copy & Replace light decompress

- HTTP-FUSE CLOOP isn't tuned well.
 - HTTP-FUSE CLOOP builds up existing drivers;
 FUSE, CLOOP driver.
 - Replace CLOOP driver with normal LOOP driver.
 The decompression is done at FUSE Wrapper.
 - Customize HTTP-FUSE CLOOP to reduce memory copy.
 - Libz is heavy for embedded system
 - Decompress is replaced

Cache Copy of HTTP-FUSE-loop (Original)

Cache Copy of HTTP-FUSE-loop (Revised)

Decompression

- Zlib is heavy on embedded system.
 - We replace Zlib with LZO
 - Or, no-compression because NIC is rich device on embedded system.

Performance

- Memory optimization is effective on ARM9.
- Light decompress is effective on SH4
- Performance is $1.8\sim2.4$ up.

Conclusions

- We propose new optimization for HTTP-FUSE CLOOP.
 - Software RIAD makes wide bandwidth and DNS-Balance finds appropriate server.
 - Software RAID makes 4.14 time wider than original
 - The combination of Software RAID and DNS Balance makes Fault Tolerance.
- We customize HTTP-FUSE CLOOP for Embedded Linux.
 - Reduced Memory Copy and replace decompress with light one.
- The combination of Software RAID, DNS-Balance, and Embedded Linux is under construction now.