How Not to Get Your Code
Accepted Into the Kernel:
Social and Technical Lessons

*Deepak Saxena
*MontaVista Software, Inc.

*dsaxena@plexity.net
+*January 19th, 2007

Why? What? Who? How?

*Lots of people getting involved with kernels
» University and Industry Research projects
* HW vendors: CPUs, SOCs, I/O devices, embedded, etc

+See same mistakes made over and over
* Social
*» Technical

* Point out some of the more common ones
» Specially from the embedded folks
* Include examples

Release Late, Release Rarely

*You have a great idea
* New exciting research area, new feature, new HW tech, etc
* Go hide in a dungeon for 12 months, working furiously!
* Achieve marvelous results!

* Release code to community after it is “done”

» Asked to rewrite large parts of it!
» “What?! | need to completely rethink my core idea!”

*Kernel developers get final say
* You may have a great idea but implementation..
* may make changes to kernel that have large ramifications
* may not work cleanly across all arches
* may be full of the issues I'm going to point out (and more)
+ Better to find issues early then to wait until you are “done”

The Cross-OS Abstraction Layer

*You have written some code for a new device
* You want to share code across multiple OSes with not changes
* You say to yourself “I| need an abstraction layer!”

* You create a sexy abstraction layer, hiding the OS specifics from your
driver core. Your CS professor would be proud!

* You submit code upstream
* Your code gets rejected

*Cross-0OS abstraction:

* Makes it harder for upstream maintainers
+ Code is not calling same kernel APls as everyone else
* Abstraction layer might have bugs

Don’t Create A Proper Abstraction Layer

*Your driver needs something not currently supported
* New HW capability such as checksum offload, RAID offload, etc

* You code capabilities, ways to enable/disable, etc directly into your
driver

* Or, you make changes directly to network, VFS, etc layer

* Your code will not be accepted
+ Chances are others need these capabilities too,
* Need an approach that is generic across HW implementations

*Work with community to add new features

#define my_custom_macro because | can()

*#define my_debug warn(dev, ...) printk (KERN_WARN“%s”, ..., dev->name)

+ Use dev_warn()
+#define ASSERT (x) if (!x) printk(..., __FILE_ , _ LINE__, _ FUNCTION_)

» Use warN on()

*#define ms_delay(x) asm(“magic assembly code to delay xms”)

+ Use mdelay ()
*Custom macros are an unneeded abstractions
» Kernel maintainers know what existing macros do

» Custom macros will be missed in search/replace

Don't Do Your Homework

*Large HW vendor developed new SOC
* Needed 12C support to read MAC address configuration
* Wrote custom chardev driver to access this information
+ drivers/i2c already defines a clean interface between 12C and users
*Different HW vendor has various crypto offload engines
+ Has written custom drivers in arch/$arch/security/ with custom ioctls()
+» drivers/crypto already exists
*Yet another HW vendor with a network device
+* Wrote custom MIl handling code instead of using existing API

*Do your research before you start:

* Read docs
* Ask on mailing list
* Use the source

You're Confusing Me!!

*You said:

L g

L g

L

Creating an abstraction layer is bad
Not abstracting things is bad
Abstracting things with custom macros is bad
| should work with community to create abstraction layer
Which one is it?
+ It depends on the type of abstraction

* Abstracting HW capabilities into common interfaces is good
+ (Upto a point....)
* Abstracting away kernel interface with custom interface is bad

Genius: Let's Implement Userspace in the Kernel!

*HW vendor's reference platform port:
Needed to load device firmware from flash
Flash is formatted using FAT

Kernel driver:
* Mounts flash

&

&

&

+ Opens configuration file
» Loads MAC address
» Loads firmware

“We need to initialize HW before it can be used”
» lIThis is what initramfs is for!!

*Thou shalt not access file system contents from kernel

&

The “l| Am Smarter Than You” Strategy

*“This is all part of what responsible release management is
about. | was the junior whiz kid in professional release
management teams before starting $company. | listened to my
elders and learned from them. My standards for professional
conduct in this arena are higher than yours as a result of that.
You are a bunch of young kids who lack professional experience
In release management.”

10

Don't Directly Participate

*Hire team of people to work on Linux drivers, subsystems, etc

*Filter all upstream contribution through one person

* Who cannot answer all the questions because he/she did not write
code

* Who must go back and forth between original developer and community

*My $customer sent me this patch to solve problem X”

* Release patch but don't explain how problem found
» Developer's can't reproduce
» Maybe original assumptions are wrong
* We can't guess...so we'll probably ignore you

11

The Other OS Does it Strategy

*$other_os provides $feature

*$other_os has larger market share

sHere's a patch implementing $feature for Linux

*Who cares if it makes sense to have $feature in kernel?

*“How about having a simple Game API like SDL included in the
Kernel and officially announce the promise to change it only once
every couple of years?”

12

Tie Code to Reference Platform

*Common mistake by embedded chipset vendors

* Linux support done for HW validation purposes
» Code written specifically for reference platform to get it done quickly
» Hard coded addresses, IRQ routing, etc
* No differentiation between CPU features and platform features

*Drivers that assume only one device per system
* Might seem realistic, but you never know what end users might

*Code needs to be portable/extensible to new platforms

13

It Works on X86, so It Must be OK!

*Bad:

virt = ioremap(HW ADDRESS);

irq status = *(virt + IRQ STATUS REG OFFSET)
» |t will work on x86 (most of the time)

* There may be architecture or platforms workarounds
+ |/O operation may be series of accesses across special registers

+GGood:

* Your code:
virt = ioremap(HW ADDRESS);

irg status = readl(virt + IRQ STATUS REG OFFSET);

* Kernel API:

#define readl(address) do {
if (requires special fixup(address))
do special hw fixup(address);

return special hw read(address);

14

The Hypothetical System

*Note: Following are paraphrased:

L g

L

L g

L 4

“Our customers are going to be running on systems with 1000s of
disks. Boot up and discover time will take too long b/c udev is calling
fork() and this unacceptable to our customers. The CGL spec requires
such and such timing. We've rewritten hotplug handling and replaced
udev.”

“Show us the numbers”
“We don't have any”
“Go away”

Repeat

*In the end, udev got rewritten to deal with forking issues
*|dea was right, but..

L 4

L 4

We're not theorists. We want real applications, real data
Reality trumps assumptions and specifications

15

TRUE '= b win32CodelsSoMuchFunToRead

int nNIRLP_open (struct inode *inode, struct file *filep)

{
struct nNIRLP_tDriverContext *context = NULL;

int minor = MINOR(inode->i_rdev) ;

tStatus status;
tStatus_set (status, 0);

nNIRLP_printDebug ("nNIRLP_open(inode (%p), file (%p))\n", inode, filep);

nNIRLP_printDebug("minor %i\n", minor);

if (0 != minor)

return -ENODEV;

context = nNIRLP_tDriverContext_create (&status);
if (tStatus_isNotFatal (status))
{

filep—->f_op = &nNIRLP_fops;

filep—>private_data = (void *)context;

return status;

16

Summary

*Release Early, Release Often

L g

If it boots, ship it!

*Understand that there is more than just your HW/device/stack

>

Your code may have ramifications you can't see

*Follow existing APls and coding standards
*Treat the community as an extension of your team

L 4

L

L 4

L 4

Listen to feedback

Work with them to add changes you need to kernel
Provide data so they can make decisions

Ask questions to the right people: kernelnewbies.org
Act courteously

Let your engineers interact with the community
» Send them to LCA, OLS, etc

17

