DHCPv6 on Linux

Suresh Kodati
Linux Competency Center
IBM Software Labs India

Bangalore, INDIA

skodati@in.ibm.com

Abstract

Dynamic Host Configuration Protocol for IPv6 de-
fines the communication mechanism between DHCP
servers and clients in an IPv6 network, whereby
servers pass network configuration parameters like
network addresses, DNS information etc., to clients.
DHCPv6, an evolving IETF standard, uses the state-
ful version of address configuration mechanism de-
fined by IPv6 standards which provides better con-
trol over the allocation of IPv6 addresses compared to
its counterpart, stateless address auto-configuration.
This paper explains our work related to the imple-
mentation of a DHCPv6 client, server and relay for
Linux as defined by IETF standards.

We discuss the architecture of the DHCPv6 solution
including design of state machine for DHCPv6 server,
address delegation policy, lease database mainte-
nance of various addresses and states in persistent
and non persistent memory, design of state machine
for client, client address request policy, storage of ad-
dresses at various phases of client.

This work has become a part of USAGI project !
which aims to deliver the production quality IPv6
protocol stack for Linux, tightly collaborating with
other projects and volunteers from various organiza-
tions.

IDHCPv6 code for client and server is accessible at
(http://www linux-ipv6.org/cvsweb/usagi/src/dhcpcode/)

1 Introduction

IPv6 has been the buzz word in Internet Protocol
fora in the recent years. The idea of IPv6 emerged in
an attempt to address many of IPv4’s shortcomings,
IPv4 has served efficiently for more than 2 decades
but the standards could not provide efficient solutions
to the exponential and rapid development of the In-
ternet and evolving security standards and require-
ments. IPv6 provides an expanded address space
which has 128 bits for IP address as against 32 bits of
IPv4, IPv6 also brings benefits such as address auto
configuration, more efficient mobility management,
and integrated IPSec.

DHCPv6 stands for Dynamic Host Configuration
Protocol for IPv6 and provides mechanism for state-
ful address auto configuration protocol provided by
IPv6. The other mode of address configuration pro-
vided by IPv6 is stateless address auto configuration
protocol. The following section 2 describes the back-
ground for DHCPv6, in IPv6 networks. Current code
is based on the draft version-23 and the latest speci-
fication is draft-28.

2 Need for DHCPv6

IPv6 defines both stateful and stateless address auto
configuration mechanism. Stateless address auto con-
figuration requires no manual configuration of hosts
[RFC:2462]. In the stateful auto configuration model
hosts obtain interface addresses and/or configuration

4-Octets

Checksum

CHL mo[ReservedqRouter Lifetime

Reachable Time

Retrans Timer

Options..

Figure 1: Router Advertisement

information (network parameters) from a server.
In stateful auto configuration scenario, server assigns
the network parameters to the hosts and keeps track
of the information that has been assigned and so it
is possible to get the information about the network
from the servers. Stateless and stateful auto config-
uration complements each other, it is possible that a
host can use stateless auto configuration to configure
its own addresses, but use stateful auto configuration
to obtain other information.

IPv6 routers send router advertisement periodi-
cally, and also in case of any specific request for the
same from any host. Router Advertisements con-
tain two flags indicating what type of auto config-
uration should be performed to obtain the network
parameters. Flag 'M’ (ManagedFlag) when set, in-
dicates hosts should use stateful auto configuration
to obtain addresses. Flag O’ when set (OtherCon-
figFlag) indicates host should use stateful auto con-
figuration to obtain other network parameters (dns
information etc, other than addresses). Irrespective
of the router advertisements an IPv6 host can gen-
erates its own link local address(es). If no routers
are present, stateful auto configuration should be in-
voked. DHCPv6 is one way of stateful auto config-
uration for IPv6. Current versions of draft do not

specify the the how DHCPv6 server leases out the
v4 addresses. There exists some similarities between
DHCPv4 and DHCPv6 mechanisms in the areas of
DDNS, Authentication etc. The term DHCP is used

in place of DHCPv6 hereafter, unless specified explic-
itly.

3 Protocol Overview

This section gives a brief overview of the protocol
specifications as well as the implementation details.

3.1 Protocol

Clients, servers and relays exchange DHCP messages
using UDP. To allow a DHCP client to send a message
to a DHCP server that is not attached to the same
link, a DHCP relay agent on the client’s link will relay
messages between the client and server.

3.2 Reserved addresses

DHCP defines the following reserved multicast ad-
dresses.

All DHCP_Agents (FF02::1:2) This link-scoped
multicast address is used by clients to commu-
nicate with the on-link agent(s), servers and re-
lays are members of this multicast group. This
was represented as DHC6_ALLAGENT_-ADDR
in the file dhcp6.h

All_ DHCP _Servers (FF05::1:3) This site-scoped
multicast address is used by clients or relays
to communicate with server(s), client’s hav-
ing sufficient scope can use this address to

reach the server. This was represented as
DHC6_AGENT_PORT in the file dhcp6.h

3.3 Message formats

DHCP protocol specifies an identical fixed format
header and a variable format area for options for the
communication between client and server. All val-
ues in the message header and options are in network
byte order. Figure 2 illustrates the format of DHCP
messages sent between clients and servers.

Message structure was defined to represent the
header along with the option to the maximum per-
missible length. Message format was defined as

struct dhc6_msg {
u_int8_t msg_type;
u_int16_t trans_id;
char dhc6_ext [BUFSIZ-24];

4-Octets

msg-type Transaction-id

Options
Variable

Figure 2: Client/Server Message format

} __attribute__ ((packed));

Options carries a common message format with op-
tion code and length. Sample structure for preference
option is defined as below.

struct dhc6_pref_option{
u_intl6_t option_code;
u_int16_t option_len;
u_int8_t pref;

} __attribute__ ((packed));

Relay agents exchange messages with servers to re-
lay messages between clients and servers that are not
connected to the same link. Implementation of relay
is not available in the current code.

3.4 Identification Of Nodes

DHCP protocol specifies unique way of identifying
the machines in the network called as DUID (DHCP
Unique Identifier). Each DHCP client and server is
required to generate its DUID. A DUID consists of
a two-octet type code represented in network byte
order, followed by a variable number of octets that
make up the actual identifier. The maximum length
of DUID has been restricted to 128 octet. The fol-
lowing types of DUID’s are defined as part of DHCP
standards though it is possible to generate its DUID
in its own fashion (Provided it is unique).

1. Link-layer address plus time

2. Vendor-assigned unique ID based on Enterprise
Number

3. Link-layer address

Our implementation has support for type 1 of
DUID types as defined by DHCP standards. Struc-
ture that has been used to represent the Type-1
DUID is defined as follows.

struct duid_type_1{
u_int16_t identifier;
u_int16_t hw_type;
uint32_t time_since_2000;
unsigned char link_layer_addr[14];
} __attribute__ ((packed));

Implementation and usage of DUID in current im-
plementation is explained in section 4.1

3.5 Message Timeouts

In DHCP the responsibility of ensuring reliable com-
munication lies entirely with clients. Client’s decision
to retransmit the same message or abort the process
depends on the type of message being transmitted,
number of retransmissions etc.,

3.6 Kernel configuration

Detailed tutorial for kernel configura-
tion for IPv6 can be obtained from
http://www.bieringer.de/linuz/IPv6 /IPv6-
HOWTO/IPv6-HOWTO-2.html

4 Client implementation

4.1 Configuration and Database

maintenance

Each DHCPv6 client needs to maintain the copy of
the DUID, store the address(es) as well as the lease
periods assigned to them. Client keeps track of the
addresses in persistent as well as non-persistent mem-
ory. Our implementation uses the following files to
save the information:

dhcpé6client.conf This file is used carry the infor-
mation about the DUID. Client generates DUID
for the first time and stores in binary format and

the same file is referenced and used for subse-
quent client restarts. Current implementation
supports the typel DUID as defined by DHCPv6
standards. APPENDIX B describes the proce-
dure for generating type 1 DUID.

dhcpé6client_addr.conf This file is useful in stor-
ing the information about the wused ad-
dress(es),prefix, and lease information of the ad-
dresses.

Client maintains the information about the ad-
dresses currently being held in memory as well.
Client uses a linked list of structure to keep track
of the addresses that it is being configured with. The
memmbers of the structure that the client uses to
store the address information are address and prefix
length. The entries in the structures are the only pa-
rameters used to configure the interface (see section
4.8). Following is the representation of the structure.

struct configured_addr{
struct in6_addr address;
u_int8_t prefix_len;
struct configured_addr *next;
I

Configured address structure

Initially client looks for the file
dhcp6celient_addr.conf for any information about the
valid addresses being held already, and copies the
information from file to memory (section 4.11,
APPENDIX C describes the code for the same.

4.2 Initialization of Client

DHCP protocol requires the communication between
client/server/relay to be over UDP. Client listens for
messages on incoming port 546, and sends messages
over port 547 for communication with servers/relays.

4.3 Client state machine

The state machine followed in the implementation
closely follows the state machine of few other im-
plementation existing already. Keeping in mind the

Client has
valid parameters Solicit
i Can thoose any of these
o Request
Confirming the addresses \
\ Invalid
Decline
Valid
Bind the addresses

T1 Expired Received SIGUSR1

Renew —> Rebind Release

. ~

Figure 3: Client State machine

Exit phase

trivial scenario of network under assumption?, state
machine was designed as simple as possible. Figure 3
depicts the state machine followed in the implemen-
tation.

4.4 Options Processing

Client and server exchange the information through
the options. Options are variable length and are part
of the message.

Client processes the options in the

client_process_option as explained below.

2Network was assumed to be a single server and direct link

between client/server

client_process_option(){
for each option in the message
switch(option_code){

case OPTION_IA
client_process_ia_option

case OPTION_PREF
client_process_pref_option

case OPTION_STATSUCODE
client_process_status_code

case OPTION_IAADDR
client_process_iaaddr_option

default
exit

Processing the options may differ depending on the
current state of the client As an example the following
procedure was used for processing the TA Address
option.

client_process_iaaddr_option(){
if current state is one of: requesting,
soliciting, or confirming then proceed;

if(ia status is fail) return;
copy all the addresses to memory.

if (status is requesting or confirming)
Copy the information and send it for
configuring the interface

4.5 Getting into the network

A client that tries to enter a network can be one out
of the following:

Client is new to the network: Client is new to
the network and tries to configure its interface.
In this case client starts from collecting the infor-
mation of the servers in the underlying network.
Section 4.6 explains the client behavior for the
clients in this context.

Client has valid parameters: A typical example
of this scenario is when a client is out of the
network with a valid address and back to the
network. Client stores the information about
the parameters in file dhcp6elient_addr.conf, and
verifies the validity of the parameters after per-
forming check over the lease periods (Procedure
for this is explained in APPENDIX C). Client
enters confirm phase if the file has valid ad-
dresses. section 4.11 describes the procedure
for this scenario.

4.6 Solicit

Client after successful initialization, gets into a phase
that can be called as solicit. By the end of this phase
client tries to collect the server information. Client
generates a transaction id and sends solicit message
to AIl_LDHCP_Agents. Client keeps retransmitting
the solicit message till it receives valid advertisements
from any server. After receiving the advertisement,
client processes it (client_process_advt) (checks for
the preference value, transaction id etc) and stores
the information about the server.

4.7 Requesting the addresses

After obtaining the information about the server, the
client uses a Request message to populate TAs with
addresses and obtain other configuration information.
The client includes one or more TA options in the
Request message. The server then returns addresses
and other information through IAs to the client in TA
options of the Reply message. Response to client’s
request message from server would be in the form of
REPLY. The reply message contains the requested
parameters along with the lease expiry times.

4.8 Client configuring the address

Client after receiving the REPLY from the server,
starts using the parameters supplied. Client needs to
perform check over the addresses being supplied (not
implemented at the moment). Client configures the
interface with the addresses supplied and stores the
information about the other parameters . If the client

Bind ' Renew ' Rebind
I I

T1 T2

Figure 4: Renew/Rebind Modes

fails to configure the address can decide to enter DE-
CLINE phase (explained in section 4.13). Client
saves the information obtained from the server as ex-
plained in the section 4.1. Client copies lease infor-
mation from the server’s reply message. Each address
has a preferred and valid life time. Client can use the
address till the valid life time. Client has to renew
the lease perios if it wishes to reuse the same address.
Server also specifies the times T1, T2 in IA options.
T1 represent the time at which the client can start
renew procedure, and T2 represents after which the
client should use only rebind message. Picture 4 de-
picts the client’s entry into renew and rebind phase
during the lifetime of the address.

Client can configure the addresses being leased out
by server. Simple script called as ”script” has been
used to configure the interface which expects inter-
face(name like ethX), reason(SET/RELEASE), ad-
dress(character string), prefix (integer) as environ-
ment variables. Client sets the environment variables
before invoking the script.

void client_add_address()
{
for each address obtained in IA ADDR option
do
Convert the HEX address to string format
Invoke the script "script" with options
interface="interface to configure"
reason=SET

prefix=PREFIX As Available from IA ADDR option

done

}

Client can choose to release the addresses currently
under the hold at any time, the phase called as re-

leasing is explained in section 4.12.

4.9 Renewing the addresses

Client enters this phase from bound phase after T1
(as specified in the TA address option). Purpose of
this is to extend the valid and preferred lifetimes for
the addresses. Client unicasts the renew message
with the addresses that it wishes to renew. Server’s
response for this message would be in the form of re-
ply. Client retransmits the renew message till it
receives reply (but before T2) or timeout. Client

after receiving the reply message processes and up-
date the lease periods in persistent and non-persistent
records. Current implementation takes care of send-
ing renew/rebind in the following way.

while(1){
FD_ZERO(&r) ;
FD_SET(Insock, &r);
time (&ti);
wait.tv_sec = CLIENT.t2 - ti;
if(wait.tv_sec < 0)wait.tv_sec = 0;

wait.tv_usec = 0;

return_value =
select (Insock+1, &r, NULL, NULL, &wait);

switch(return_value){

case O:

if(client_ren(serveraddr, CLIENT.t2) == -1){

dPrint (DBUG, "\nRebinding...... ");
client_reb();

}
elseq{

dPrint (DBUG, "\n Renewed Successfully");

break;
}

break;

case 1:
if (FD_ISSET(Insock,&r)){
client_ren_Reconfig();

}

2Changes went into latest draft regarding unicasting op-
tions

break;

case -1:
break;

After successful completion of renew phase client
enters bound phase with updated T1 and T2. If the
client fails to receive any reply from the server before
T2 it enters into rebind phase.

4.10 Rebinding the addresses

Client uses this state to extend the valid and pre-
ferred lifetimes for the addresses after failing to ex-
tent the lease in renew phase. The basic difference
between the Renew and Rebind phases exists in the
way the client transfers the message, in former case
the client sends Renew message only to the server
that has assigned the paramters to the client whereas
in case of Rebind the message would be multicasted
to the DHC6_ALLAGENT_ADDR so that any server
that is ready to lease out the addresses can respond
positively. Client enter this phase from renew after

T2. Client sends rebind message and servers response
for this would be in the form of Reply message. Client
after receiving positive reply from the server, updates
the information in the persistent and non-persistent
records. If the client fails to receive any response
from any server before lease expiry, can choose to
send SOLICIT, or use other addresses.

4.11 Confirming the address

DHCP standards specifies that the client use confirm
message to confirm the validity of the addresses as
and when required (Usually re-entry into the net-
work etc). Current implementation verifies the valid-
ity of the parameters from the dhcp6elient_addr.conf
file and enter this phase directly. Client sends a con-
firm message and goes to bound phase directly. Com-
plete description is provided in APPENDIX C.

4.12 Releasing the addresses

Client can choose to release the addresses under hold
at any time (Usually from bound phase). The cur-
rent implementation contains an external interface
through signal. Client after receiving the external
signal for release of the address, enter phase called
as release. Client after deciding to release the ad-
dress(es) enters release phase, client_rel(serveraddr).
Client sends release message with the addresses to be
released sent as an option. Server response to release
message would be in the form of reply. But, the client
need not wait for server’s reply to proceed further.
Client, at the end of the release phase, releases the
addresses from the database, and reconfigures net-
work (if required).

An external interface was used for releasing the
address. Client releases the address being held on
receiving the signal "SIGUSR1”. Implementation
of signal and handlers is as described below. sig-
nal(SIGUSR1, signal handler); And signal handler
was defined as

void signal_handler(int i)
{
client_rel(serveraddr) ;
return;

After releasing the addresses Client has to config-
ure the interface accordingly. In this case client uses
the ”"script” with the reason set as "RELEASE”

void client_add_address()
{
for each address to be released option
do
Convert the HEX address to string format
Invoke the script "script" with options
interface="interface to configure"
reason=RELEASE

prefix=PREFIX As Available from IA ADDR option
Remove the address from the configured address list

done

4.13 Declining the addresses

Client enters this phase when the client has been pro-
vided with the addresses which has zero life time, or

when the client finds the address provided is already
in use or when the client decides against using the
address(es) provided by server.

5 Server implementation

This section explains the behavior of dhcpv6 server
and its response to various client requests.

5.1 Server Responsibilities

DHCPv6 server is responsible for, allocation of ad-
dresses to the client, maintenance of addresses, re-
configuring the network in case of any change in the
network parameters (like subnet prefix, dns server
change etc.,).

5.1.1 Configuration and Database main-

tainance

dhcp6.lease This file is used by server to main-
tain record of the addresses being leased out for
clients. This file is indexed by DUID, contains
the information about the address and the lease
periods.

dhcp6.conf This file is serves as input to the
DHCPv6 server about the underlying network
parameters (Currently supports start address,
end address prefix,preference and address that
can be lease period). Sample dhcp6.conf is pro-
vided in APPENDIX D.

5.1.2 Initialization of Address Database

Server maintains the information about each address
in the structure defined below.

struct addr_list{
struct in6_addr address;
int status;
uint32_t dhcIAID;
struct duid_type_1 duid;
time_t T1;
time_t T2;

Each strucutre carries the address, status, lease pe-
riods and the client to which the address has been
assigned. As part of initialisation server creates s
strucutre for each address that it is capable of all-
coating (number of addresses is calculated from
the start and end address from the file dhep6.conf).
Server while loading the lease information from the
file dhcp6.lease, verifies the validity of the addresses
and marks each address as UN_ASSIGNED or AS-
SIGNED. Figure 5 explains the address allocation
mechanism pictorially. b

(A different approach to keep the information only
about the current address being served, can be used
based on the factors like number of addresses, lifetime
of the address etc.)

5.2 Address Delegation Policy

Client sends the information about the address that it
is interested in the address filed of TA Address option.
Server’s response to IA Address option varies on the
type of the messages in which TA address option has
been encapsulated. Server sends a positive/negative
response to client based on the current state of the
address, and the message. Address delegation policy
is explained in figure 5.

5.3 Initialization of the server

As part of Initialization process server initializes
sockets, address database, checks the validity of the
current lease database and clears the addresses whose
lease period has expired. After initialization server
enters into a state which can be described as Bound
state.

5.4 Server state machine

State machine of server is quite simple and depicted
in figure 6. In Bound phase the server keeps listening
to the client port 547. Requirement of the phase is
to listen client port for client messages, ans respond
accordingly. Server response to client’s messages is
as follows.

server_loop(){

Functions carried out:

initialise_address_base(){
calculate number of address
Allocate memory

Initialise to UN_ALLOCATED

Initialise }
address base

server_load_lease_base(){

read list of leases from lease file

verify the lease validity

load the information from file to memory
} mark the valid addresses ALLOCATED

server_set_client_addr(){

On Solicit Identify the first unallocated address.
V Mark it TEMP_ALLOCATED
Bound phase | . quest/
renew server_get_client_addr(){
Mark the address AGGIGNED
Relese }
Declin

server_release_addr_from_file{
Mark the status UN_ALLOCATED
Update the lease databsae file

Figure 5: Server Address Delegation Policy

switch(message header){

case SOLICIT:
Identify the first free address;
Mark the address TEMP_ALLOCATED;

case REQUEST:
Check if the address was allocated to
the same client previously.
If so, mark the IA Address status SUCCESS.
Mark the entries ASSIGNED.
Save the information to lease file.

case RENEW:
Check if the address was allocated to
the client previously and state ASSIGNED.
Assign client, new lease information.

Update the lease file with changes lease values.

case CONFIRM:
Check if the client was already configured
the same address, state is ASSIGNED.

case RELEASE/DECLINE:
Check if the client was configured
with the same address.
Mark the status UN_ASSIGNED.
Delete the entries from the lease file.

Apart from the functionalities described above, the
server can monitor malicious clients and can reject
any message from the client.

6 Future work

The latest DHCPv6 specifications are available in
draft-ietf-dhe-dhepv6-28.txt [Draft28] which has
been accepted by IESG as proposed standard. Signif-
icant changes that may require modifications to the
state machine are, support for reconfigure messages,
authentication etc. However, current code suits well
as a base work for the future work. Server implemen-

tation needs to be upgraded to make it highly scalable
in networks under heavy load. Implementing multi-
thread server, and invoking a seperate thread for each
client’s message would keep the server highly avail-
able for clients. This implementation would provide

with

10

Initialise
sockets

Initialise
databse

Server
Service
loop

On Client message

Figure 6: Server State machine

high through put when there is outage in the current
network and after which all clients try to re-enter the
network at a time. This change do not require much
changes to the current code. State machines need
to be updated with the introduction of reconfigure
message. Client implementation also needs changes

in terms of address configuration and better address
management. Support has to provided for reconfig-
ure message and relay messages. Relay needs to im-

plemented completely.

7 Acknowledgments

I would like to thank the following individuals for
their excellent support and efforts in making this pa-
per: Vijay K Sukthankar, Dipankar Sarma, Suparna
Bhattacharya, R Sharada and V Srivatsa.

8 Disclaimer

This work represents the views of authors and does
not necessarily represent the views of IBM.

9 Copyrights

Linux is the registered trademark of Linus Torvalds.

References

[RFC:2462] RFC:2462 IPvG Stateless Address Auto-

configuration

[Draft28] Dynamic Host Configuration Protocol for
IPv6 (DHCPv6),draft-ietf-dhc-dhcpv6-28.txt

[Draft23] Dynamic Host Configuration Protocol for
IPv6 (DHCPv6),draft-ietf-dhc-dhepv6-23.tat

APPENDIX A

int server_get_client_addr(struct in6_addr add)
{

int 1i;

11

FILE *fplease;
char rem[50];

i=ntohs(add.s6_addr16[7]-
addrlist[0] .address.s6_addr16[7]);

if (memcmp (%add, &addrlist[i].address,
sizeof (struct in6_addr)) == 0 &&
addrlist[i] .dhcIAID == CLIENT_STAT.IAID&&
(memcmp (%¥addrlist[i] .duid, &CLIENT_STAT.DUID,
sizeof (&addrlist[i] .duid)) == 0)){

addrlist[i] .status = ASSIGNED;
inet_ntop(AF_INET6, &addrlist[i].address,
rem,40) ;
fplease = fopen(LEASE_FILE, "a+");
if (fplease == NULL){
exit (0);
}

fprintf (fplease, "%s %d ",rem,
CLIENT_STAT.IAID);

fwrite (&CLIENT_STAT.DUID,
sizeof (CLIENT_STAT.DUID), 1, fplease);

fprintf (fplease, " %d %d",(int)CLIENT_STAT.T1,
(int)CLIENT_STAT.T2);

fprintf (fplease, "\n");
fclose(fplease);
return O ;

}

inet_ntop(AF_INET6, &add,rem,40);
return (-1);

Address delegation policy

APPENDIX B

DUID Type 1 Generation

void client_generate_duid()

{

time_t t2,t3;
struct tm *brk;
uint32_t i;

struct ifreq ifhw;
FILE *fp;

int s;
u_int16_t hwtype;

fp = fopen(DHCP_CONF, "r");

duid_cur.identifier = 1;
rk=(struct tm *)malloc(sizeof (struct tm));

ioctl(s, SIOCGIFHWADDR, &ifhw);
switch(hwtype){
case ARPHRD_AX25:
memcpy (duid_cur.link_layer_addr,
ifhw.ifr_hwaddr.sa_data, 6);
break;

default:
exit (0);
};
fp = fopen(DHCP_CONF, "w+");

fwrite(&duid_cur, sizeof(duid_cur), 1, fp);

APPENDIX C

client_has_config()

{

FILE *fp;
char char_addr[40];
int prefix_len;
struct in6_addr address;
struct configured_addr *temp_conf=NULL;
fp = fopen(CLIENT_CONF, "r");
while(fscanf(fp,"%s %d %d %d\n",char_addr,
&prefix_len, (int *)&CLIENT.t1,
(int *)&CLIENT.t2) != EOF){

if (Confaddr == NULL){
Confaddr = (struct configured_addr *)
malloc (sizeof
(struct configured_addr));

if (Confaddr == NULL){
exit (0);

12

inet_pton(AF_INET6, char_addr, &address);

memcpy (& (Confaddr->address), &address,
sizeof (address));

Confaddr->prefix_len = prefix_len;

Confaddr->next = NULL;

}
elseq{
temp_conf = Confaddr;
while(Confaddr->next != NULL)
Confaddr = Confaddr->next;
Confaddr->next =
(struct configured_addr *)malloc(
sizeof (struct configured_addr));
if (Confaddr->next == NULL){
dPrint (DBUG, "Error: Allocating memory");
exit (0);
}
Confaddr = Confaddr->next;
inet_pton(AF_INET6, char_addr, &address);
memcpy (& (Confaddr->address), &address,
sizeof (address));
Confaddr->prefix_len = prefix_len;
Confaddr->next = NULL;
Confaddr = temp_conf;
}
}
fclose(£fp);

client_conf();

APPENDIX D

Sample dhcp6b.conf file

prefix 10

start fe80::2020:55ff:fe39:££f01
end fe80::2020:55ff:fe39:ffff
preference 255

lifetime 1025

