ControlWizard

Instructions for formatting control files
The control file consists of various elements:

1. Labels: a string used to identify the variable.

2. Values: the values to be input to the variables.

3. Delimiters: specify the format of the control file by indicating where labels and values start and finish.

4. Whitespace and comment: simply passed over when the control file is read.

Whitespace is user-defined. Whitespace is ignored before and after labels, before and after the assignment operator, and before values. Defaults are spaces, newlines, carriage returns and EOFs.

To comment a line use the rem symbol at the start of the line. The rem symbol is a user-defined single character, whose default is #. Only full lines can be commented. The rest of the line will be ignored until the next line delimiter is reached.

The assignment operator is a user-defined single character. Label reading continues until the assignment operator. Value reading proceeds immediately after the assignment operator. Default is =.

Line delimiters are user-defined. Value reading continues until the line delimiter. Label reading proceeds immediately after the line delimiter. Defaults are newlines and carriage returns.

Element delimiters separate values that go to make up the elements of a vector. Default is the comma.

Labels that are prematurely terminated by a rem symbol or an EOF are simply ignored.

Note that:

1. Labels cannot contain whitespace.
2. Values that are not entered or specified correctly will not be read correctly.
3. All whitespace before a string is ignored, but it is included thereafter, including after the end of the string.
4. Where there are duplicate labels the latest one will be used.

5. The double quote " character is reserved for delimiting text strings (TP_STRING).
Implementing
Include the header file into your program. ControlWizard uses C++ classes, so the compiler must be compatible. Then in your code:
1. Create an instance of the class by using the code

ControlWizard control_file;

2. Specify the label, type and location of your variables. Therefore the variables must already have been declared. For example

control_file.add_item("apples",TP_INT,&apples);

control_file.add_ITEM("oranges",TP_INT,&oranges);

control_file.add_item("bananas",TP_DOUBLE,&bananas);

control_file.add_item("hotdogs",TP_STRING,&hotdogs);

control_file.add_item("cars",TP_VEC_DOUBLE,&cars);

control_file.add_item("trees",TP_EXT_VEC_DOUBLE,&trees);

3. Execute the reading of your control file in the following way

control_file.read_input("control.ini");
The item "oranges" uses the capitalised version add_ITEM() to indicate that it is a required variable. The member variable got_required will return true if all required variables were input. The member function check_required() will give a visual result.
Set the member variable coutput to false if you do not want screen output during data input. The default is true.

control_file.coutput=false;
By default ControlWizard is not case sensitive. To force it to be case sensitive use the following command before any add_item() or add_ITEM() commands, and do not change it thereafter.

control_file.case_sensitive=true;
Types currently available for reading in

TP_INT
Single integer value

TP_DOUBLE
Single double value

TP_STRING
A single string enclosed in "double quotes"
TP_VEC_INT
A vector of integers. Outputs to the STL container vector<int>

TP_VEC_DOUBLE
A vector of doubles. Outputs to the STL container vector<double>

TP_EXT_VEC_DOUBLE
A vector of doubles contained in an external file, the location of which only is specified.

Customising the format
ControlWizard is very simple. Only the member variables and functions that you might be interested in accessing are public. The public member functions are described above. The public member variables are those that you might wish to modify for custom formatting (defaults on right):
white_space
Character(s) treated as whitespace
space, EOF, newline, CR

label_delimiters
The assignment operator(s)
=

line_delimiters
The end-of-line character(s)
newline, CR

elem_delimiters
The value-separator(s) for vector value lists
,
rem_delimiters
The rem symbols(s)
#
To augment these lists, which are of type vector<int>, the easiest way to do this is, prior to the read_input() command, use (for example)

control_file.line_delimiters.push_back(';');

control_file.elem_delimiters.push_back('\t');

which would make ; into an end-of-line delimiter, and tab into a separator for lists of values.

To remove items from the default lists, the easiest thing to do is first to clear all delimiters and then start from scratch, as follows

control_file.label_delimiters.clear();

control_file.label_delimiters.push_back(':');

which would replace = with : as the assignment operator.

Adding new data types

To include new types would require modifying the source files for ControlWizard. For example, to add the type TP_EXT_VEC_INT it would be relatively straightforward to model it on the code for TP_EXT_VEC_DOUBLE.

You would need to

1. Add a new data type to the enumeration DATA_TYPE in the header file.

2. Add a new member function in the same caste as existing functions for dealing with the data. The function would need a declaration in the class declaration (header file) and a definition in the source file.

3. Note that these functions are of type RTRV and take (std::ifstream &infile, std::string &label) as their arguments. It is necessary to use this format for the next step, which uses function pointers.
4. Locate ControlWizard::data_format(), which contains a switch control sequence. Depending upon the case (which is of type DATA_TYPE), a generic function pointer is redirected to one of the data handling functions.

5. Add a case for the new DATA_TYPE which redirects the function pointer read_data() to your new function.

